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Funkcje trygonometryczne zmiennej rzeczywistej. 
 
Definicje funkcji trygonometrycznych zmiennej rzeczywistej: 
 
W rozważaniach geometrycznych zwykle rozpatruje się funkcje trygonometryczne kąta, 
natomiast w rozważaniach algebraicznych (analitycznych) przyjmuje się, że argumentami 
funkcji trygonometrycznych są liczby rzeczywiste. 
Niech x oznacza miarę łukową kąta α . Wtedy 
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Wówczas funkcje trygonometryczne zmiennej rzeczywistej x definiujemy następująco: 
sinusem  liczby rzeczywistej x nazywamy  sinus kąta α , którego ta liczba jest miarą łukową 
kosinusem        -„- kosinus                         -„- 
tangensem        -„- tangens                         -„- 
kotangensem        -„- kotangens                     -„- 
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Okresowość funkcji trygonometrycznych: 
 
Obrót końcowego ramienia kąta o całkowitą wielokrotność kąta pełnego ( 360 ) nie zmienia 
wartości funkcji trygonometrycznych, i tak: 
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Kątem nazywamy sumę dwóch półprostych o wspólnym początku i części płaszczyzny wyciętej 
przez te półproste 
 

     
 
 
Kątem skierowanym nazywamy kąt z ustaloną kolejnością ramion.  

 
 
Kąty skierowanie powstające na skutek obrotu końcowego ramienia w kierunku przeciwnym 
(zgodnym) do kierunku ruchu wskazówek zegara uznajemy za dodatnie (ujemne).  
Ćwiczenie:        
Zaznacz następujące kąty skierowane, których początkowe ramię stanowi dodatnie półoś OX 

 
 
 
 
DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH DOWOLNEGO KĄTA SKIEROWANEGO: 
 
Niech α będzie dowolnym kątem skierowanym. Wówczas: 
sinusem [kosinusem] kąta α  nazywamy stosunek rzędnej [odciętej] punktu dowolnie wybranego na 
końcowym ramieniu kąta α do odległości tego punktu od początku układu współrzędnych. 
tangensem [kotangensem] kąta α nazywamy stosunek rzędnej [odciętej] punktu dowolnie obranego 
na końcowym ramieniu kąta do odciętej [rzędnej] tego punktu różnej od zera 
Uwaga: Funkcja tangens[kotangens] nie jest określona dla kątów których odcięta [rzędna] punktów 
leżących na końcowym ramieniu jest równa zero, a więc dla kątów, których końcowe ramię zawarte 
jest w osi rzędnych, a więc dla kątów postaci ,...,450,27090α   tzn. Ck,180k90α   

[ ,...,360,1800α  tj. Ck,180kα  ] 

Zatem: 
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C}k,180kα:{αtg cD  

Oblicz wartości funkcji trygonometrycznych kąta  390α  (dom.:  60,120,420 ) 
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OA   - ramię początkowe kąta 
OB.  – ramię końcowe kąta 
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