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P- dowolny punkt wybrany na końcowym ramieniu kąta  

Przyjmując: 
|OP|=r  ,   definiujemy funkcje trygonometryczne dowolnego kąta w następujący sposób , a następnie określamy 
znak funkcji trygonometrycznych w poszczególnych ćwiartkach układu współrzędnych:  
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WZORY REDUKCYJNE   /wyprowadzenie/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Jak zapamiętać wzory redukcyjne? 
 
Jeżeli po lewej stronie wzoru redukcyjnego występuje kąt 180 lub 360, to nazwa funkcji po prawej stronie nie 
zmienia się. Jeżeli po prawej stronie wzoru występuje kąt 90 lub 270, to nazwa funkcji po prawej stronie 
zmienia się na kofunkcję. Znak po prawej stronie wzoru ustalamy według tego, jaki znak ma funkcja po lewej 
stronie w danej ćwiartce. 
Np. sin(270+)=-cos (nazwa funkcji zmienia się na kofunkcję, ponieważ po lewej stronie wzoru występuje 
kąt 270, Znak „-” jest dlatego, że sinus kąta, którego ramię końcowe znajduje się w III ćwiartce jest ujemny). 
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Uwaga I  
Wprowadzone wzory redukcyjne na kąt 180-, 180+ i 360- w zasadzie wystarczają do tego, aby każdy kąt 
dodatni, mniejszy od 360 zredukować do kąta leżącego w I ćwiartce, ponieważ: 
dowolny kąt II ćwiartki można przedstawić w postaci 180- 
dowolny kąt III ćwiartki można przedstawić w postaci 180+ 
dowolny kąt IV ćwiartki można przedstawić w postaci 360- 
 
Uwaga II 
Funkcje trygonometryczne określone są dla dowolnie dużych kątów, jednak w tablicach nie podaje się ich 
wartości dla kątów wykraczających poza zakres 0-90. Z uwagi na to, wprowadzając wzory redukcyjne, 
braliśmy kąt  z przedziału (0º,90º). Kąt  jednak może być dowolnie duży i całe rozumowanie pozostaje 
prawdziwe. 
 
 
 
 
 
 
 
 
 
 
 
 
 


